To access the full text documents, please follow this link: http://hdl.handle.net/10230/6067

A low dimensional Kalman filter for systems with lagged observables
Nimark, Kristoffer
Universitat Pompeu Fabra. Departament d'Economia i Empresa
This note describes how the Kalman filter can be modified to allow for thevector of observables to be a function of lagged variables without increasing the dimensionof the state vector in the filter. This is useful in applications where it is desirable to keepthe dimension of the state vector low. The modified filter and accompanying code (whichnests the standard filter) can be used to compute (i) the steady state Kalman filter (ii) thelog likelihood of a parameterized state space model conditional on a history of observables(iii) a smoothed estimate of latent state variables and (iv) a draw from the distribution oflatent states conditional on a history of observables.
2010-05-13
Macroeconomics and International Economics
kalman filter
lagged observables
kalman smoother
simulation smoother
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
Working Paper
         

Show full item record

 

Coordination

 

Supporters