Use this identifier to quote or link this document: http://hdl.handle.net/2072/5335

On the complexity of the Whitehead minimization problem
Roig, Abdó; Ventura, Enric; Weil, Pascal
Centre de Recerca Matemàtica
The Whitehead minimization problem consists in finding a minimum size element in the automorphic orbit of a word, a cyclic word or a finitely generated subgroup in a finite rank free group. We give the first fully polynomial algorithm to solve this problem, that is, an algorithm that is polynomial both in the length of the input word and in the rank of the free group. Earlier algorithms had an exponential dependency in the rank of the free group. It follows that the primitivity problem – to decide whether a word is an element of some basis of the free group – and the free factor problem can also be solved in polynomial time.
2006-11
517 - Anàlisi
Integrals singulars
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)
Preprint
Centre de Recerca Matemàtica
Prepublicacions del Centre de Recerca Matemàtica;721
         

Full text files in this document

Files Size Format
Pr721.pdf 257.5 KB PDF

Show full item record

Related documents

Other documents of the same author

Myasnikov, Alexei; Ventura, Enric; Weil, Pascal
Bassino, Frédérique; Martino, Armando; Nicaud, Cyril; Ventura, Enric; Weil, Pascal
Bassino, Frédérique; Martino, Armando; Nicaud, Cyril; Ventura Capell, Enric; Weil, Pascal
Bassino, Frederique; Martino, Armando; Nicaud, Cyril; Ventura Capell, Enric; Weil, Pascal
 

Coordination

 

Supporters