To access the full text documents, please follow this link: http://hdl.handle.net/2445/11985

Max-convex decompositions for cooperative TU games
Llerena Garrés, Francesc; Rafels, Carles
Universitat de Barcelona
We show that any cooperative TU game is the maximum of a finite collection of convex games. This max-convex decomposition can be refined by using convex games with non-negative dividends for all coalitions of at least two players. As a consequence of the above results we show that the class of modular games is a set of generators of the distributive lattice of all cooperative TU games. Finally, we characterize zero-monotonic games using a strong max-convex decomposition
- En aquest treball es demostra que tot joc cooperatiu d'utilitat transferible (o joc cooperatiu TU) es pot representar com el màxim d'una col.lecció finita de jocs convexes. Aquest resultat es pot refinar utilitzant jocs quasi-positius. És a dir, jocs convexes on els dividends associats a les coalicions de dos o més jugadors són positius o nuls. Aquests resultats permeten provar que els jocs modulars formen un sistema de generadors del reticle distributiu que formen el jocs cooperatius TU. Finalment, es dona una caracterització dels jocs zero-monòtons imposant una condició més forta: que tots els jocs que intervenen en la descomposició tinguin el mateix conjunt d'imputacions.
2010-05-11
Teoria de jocs
Economia matemàtica
Game theory
Mathematical economics
cc-by-nc-nd, (c) Llerena et al., 2004
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
Working Paper
Universitat de Barcelona. Facultat d'Economia i Empresa
         

Show full item record

 

Coordination

 

Supporters