Use this identifier to quote or link this document:

Rigorous derivation of a nonlinear diffusion equation as fast-reaction limit of a continuous coagulation-fragmentation model with diffusion
Carrillo, José A.; Desvillettes, L.; Fellner, K.
Centre de Recerca Matemàtica
Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [CDF2], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters.
517 - Anàlisi
Equacions no lineals
Dualitat, Teoria de la (Matemàtica)
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (
Centre de Recerca Matemàtica
Prepublicacions del Centre de Recerca Matemàtica;887

Full text files in this document

Files Size Format
Pr887.pdf 209.5 KB PDF

Show full item record