Use this identifier to quote or link this document: http://hdl.handle.net/2072/41986

A Data mining approach to indirect inference
Creel, Michael D.
Universitat Autònoma de Barcelona. Unitat de Fonaments de l'Anàlisi Econòmica; Institut d'Anàlisi Econòmica
Consider a model with parameter phi, and an auxiliary model with parameter theta. Let phi be a randomly sampled from a given density over the known parameter space. Monte Carlo methods can be used to draw simulated data and compute the corresponding estimate of theta, say theta_tilde. A large set of tuples (phi, theta_tilde) can be generated in this manner. Nonparametric methods may be use to fit the function E(phi|theta_tilde=a), using these tuples. It is proposed to estimate phi using the fitted E(phi|theta_tilde=theta_hat), where theta_hat is the auxiliary estimate, using the real sample data. This is a consistent and asymptotically normally distributed estimator, under certain assumptions. Monte Carlo results for dynamic panel data and vector autoregressions show that this estimator can have very attractive small sample properties. Confidence intervals can be constructed using the quantiles of the phi for which theta_tilde is close to theta_hat. Such confidence intervals are found to have very accurate coverage.
2009-11-02
Mineria de dades
Anàlisi de dades de panel
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat, la unitat i l’institut i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)
Working Paper
Working papers; 788.09
         

Full text files in this document

Files Size Format
78809.pdf 434.8 KB PDF

Show full item record

 

Coordination

 

Supporters