Use this identifier to quote or link this document: http://hdl.handle.net/2072/41797

Semigroup analysis of structured populations with distributed states-at-birth arising in mathematical aquaculture
Farkas, József Z.; Green, Darren; Hinow, Peter
Centre de Recerca Matemàtica
Motivated by the modelling of structured parasite populations in aquaculture we consider a class of physiologically structured population models, where individuals may be recruited into the population at different sizes in general. That is, we consider a size-structured population model with distributed states-at-birth. The mathematical model which describes the evolution of such a population is a first order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral theory of semigroups to establish conditions for the existence of a positive equilibrium solution of our model. Then we formulate conditions that guarantee that the linearised system is governed by a positive quasicontraction semigroup on the biologically relevant state space. We also show that the governing linear semigroup is eventually compact, hence growth properties of the semigroup are determined by the spectrum of its generator. In case of a separable fertility function we deduce a characteristic equation and investigate the stability of equilibrium solutions in the general case using positive perturbation arguments.
2009-06
517 - Anàlisi
Estabilitat
Teoria espectral (Matemàtica)
Semigrups
Aqüicultura
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)
Preprint
Centre de Recerca Matemàtica
Prepublicacions del Centre de Recerca Matemàtica;865
         

Full text files in this document

Files Size Format
Pr865.pdf 237.5 KB PDF

Show full item record

 

Coordination

 

Supporters