To access the full text documents, please follow this link:

Mixed Stabilized Finite Element Methods in Nonlinear Solid Mechanics. Part I: Formulation
Cervera Ruiz, Miguel; Chiumenti, Michèle; Codina, Ramon
Universitat Politècnica de Catalunya. Departament de Resistència dels Materials i Estructures en Enginyeria; Universitat Politècnica de Catalunya. (MC)2 - Grup de Mecànica Computacional en Medis Continus
This paper exploits the concept of stabilized finite element methods to formulate stable mixed stress/displacement and strain/displacement finite elements for the solution of nonlinear solid mechanics problems. The different assumptions and approximations used to derive the methods are exposed. The proposed procedure is very general, applicable to 2D and 3D problems and independent of the constitutive equation considered. Implementation and computational aspects are also discussed, showing that a robust application of the proposed formulation is feasible. Numerical examples show that the results obtained compare favourably with those obtained with the corresponding irreducible formulation.
Àrees temàtiques de la UPC::Enginyeria civil::Materials i estructures
Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
Finite element method
Solid mechanics and its applications
Mixed finite element interpolations
Stabilization methods
Orthogonal sub-grid scales
Nonlinear solid mechanics
Mètode dels elements finits
Mecànica dels sòlids
Consulteu les condicions d'ús d'aquest document en el repositori original:

Show full item record

Related documents