To access the full text documents, please follow this link: http://hdl.handle.net/2117/2355

The geometry of t-cliques in k-walk-regular graphs
Dalfó Simó, Cristina; Fiol Mora, Miquel Àngel; Garriga Valle, Ernest
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV; Universitat Politècnica de Catalunya. COMBGRAF - Combinatòria, Teoria de Grafs i Aplicacions
A graph is walk-regular if the number of cycles of length $\ell$ rooted at a given vertex is a constant through all the vertices. For a walk-regular graph $G$ with $d+1$ different eigenvalues and spectrally maximum diameter $D=d$, we study the geometry of its$d$-cliques, that is, the sets of vertices which are mutually at distance $d$. When these vertices are projected onto an eigenspace of its adjacency matrix, we show that they form a regular tetrahedron and we compute its parameters. Moreover, the results are generalized to the case of $k$-walk-regular graphs, a family which includes both walk-regular and distance-regular graphs, and their $t$-cliques or vertices at distance $t$ from each other.
2012-05-10
Graph theory
Walk-regular graphs
k-walk-regular graphs
Spectral regularity
Crossel local multiplicities of eigenvalues
Grafs, Teoria de
Classificació AMS::05 Combinatorics::05C Graph theory
Consulteu les condicions d'ús d'aquest document en el repositori original:http://hdl.handle.net/2117/2355
Article
         

Show full item record

Related documents

Other documents of the same author

Dalfó Simó, Cristina; Fiol Mora, Miquel Àngel; Garriga Valle, Ernest
Dalfó Simó, Cristina; Fiol Mora, Miquel Àngel; Garriga Valle, Ernest
Dalfó Simó, Cristina; Fiol Mora, Miquel Àngel; Garriga Valle, Ernest
Dalfó Simó, Cristina; Fiol Mora, Miquel Àngel; Garriga Valle, Ernest
Dalfó Simó, Cristina; Fiol Mora, Miquel Àngel; Garriga Valle, Ernest
 

Coordination

 

Supporters