Use this identifier to quote or link this document: http://hdl.handle.net/2072/1740

Semidiscretization and long-time asymptotics of nonlinear diffusion equations
Carrillo, José A.; Di Francesco, Marco; Gualdani, Maria P.
Centre de Recerca Matemàtica
We review several results concerning the long time asymptotics of nonlinear diffusion models based on entropy and mass transport methods. Semidiscretization of these nonlinear diffusion models are proposed and their numerical properties analysed. We demonstrate the long time asymptotic results by numerical simulation and we discuss several open problems based on these numerical results. We show that for general nonlinear diffusion equations the long-time asymptotics can be characterized in terms of fixed points of certain maps which are contractions for the euclidean Wasserstein distance. In fact, we propose a new scaling for which we can prove that this family of fixed points converges to the Barenblatt solution for perturbations of homogeneous nonlinearities for values close to zero.
2005-03
Burger, Equacions de
Desenvolupaments asimptòtics
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)
Preprint
Centre de Recerca Matemàtica
Prepublicacions del Centre de Recerca Matemàtica;625
         

Full text files in this document

Files Size Format
pr625.pdf 1.108 MB PDF

Show full item record

 

Coordination

 

Supporters