Use this identifier to quote or link this document: http://hdl.handle.net/2072/1727

Combinatorial and metric properties of Thompson's group T
Burillo Puig, Josep; Cleary, Sean; Stein, Melanie; Taback, Jennifer
Centre de Recerca Matemàtica
We discuss metric and combinatorial properties of Thompson's group T, such as the normal forms for elements and uniqueness of tree pair diagrams. We relate these properties to those of Thompson's group F when possible, and highlight combinatorial differences between the two groups. We define a set of unique normal forms for elements of T arising from minimal factorizations of elements into convenient pieces. We show that the number of carets in a reduced representative of T estimates the word length, that F is undistorted in T, and that cyclic subgroups of T are undistorted. We show that every element of T has a power which is conjugate to an element of F and describe how to recognize torsion elements in T.
2005-03
Grups, Teoria dels
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)
Preprint
Centre de Recerca Matemàtica
Prepublicacions del Centre de Recerca Matemàtica;621
         

Full text files in this document

Files Size Format
pr621.pdf 234.2 KB PDF

Show full item record

 

Coordination

 

Supporters